
MODULE V

Graphical User Interface and Database

support of Java:

Syllabus:
 Swings fundamentals - Swing Key Features, Model View

Controller (MVC), Swing Controls, Components and

Containers, Swing Packages, Event Handling in Swings, Swing

Layout Managers, Exploring Swings –JFrame, JLabel, The Swing

Buttons, JTextField.

 Java DataBase Connectivity (JDBC) - JDBC overview, Creating

and Executing Queries – create table, delete, insert, select.

Swings

➢The Swing-related classes are contained in javax.swing.

➢Swing is a set of classes that provides more powerful and flexible

GUI components than are possible with the AWT.

➢All components have more capabilities in Swing.

Example: A button may have both an image and a text string

associated with it. Also, the image can be changed as the state of

the button changes.

➢Swing library is an official Java GUI tool kit released by Sun

Microsystems

➢Java Swing provides platform-independent and lightweight

components

➢Java Swing is a part of Java Foundation Classes(JFC) that

is used to create window-based applications.

➢It is built on the top of AWT and entirely written in java.

JFC

➢The Java Foundation Classes(JFC) are a set of GUI

components which simplify the development of desktop

applications.

➢The javax.swing package provides classes for java swing

API such as JButton, JTextField, JTextArea,

JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Features of Swing (Advantages of Swings over AWT)

Platform Independent

➢ It is platform independent, the swing component that are used to

build the programs are not platform specific.

➢ The behavior and appearance of Swing components is consistent

across platforms, whereas AWT components will differ from platform

to platform. Thus Swing is platform independent whereas AWT is

platform dependent.

Swing Components Are Lightweight

➢ This means that they are written entirely in Java and do not map

directly to platform-specific peers.

Swing Supports a Pluggable Look and Feel

➢ SWING based GUI Application look and feel can be changed at run-

time, based on available values.

Swing uses MVC Architecture

➢ Java's Swing components have been implemented using the

model-view controller (MVC) model.

➢ Any Swing component can be viewed in terms of three

independent aspects: what state it is in (its model), how it

looks (its view), and what it does (its controller). Suppose

the user clicks on a button. This action is detected by the

controller. The controller tells the model to change into the

pressed state. The model in turn generates an event that is

passed to the view. The event tells the view that the button

needs to be redrawn to reflect its change in state.

➢ High level of separation between view and controller is not

beneficial for Swing components. Instead Swing uses a

modified version of MVC that combines the view and

controller into a single entuity called UI(User Interface)

delegate. For this reason ,Swing’s approach is called either the

Model-Delegate architecture or Separable Model architecture.

Rich Controls

➢ Swing is the latest GUI toolkit, and provides a richer set of

interface components than the AWT.

Customizable

➢ Swing components can be given their own "look and feel“.

Example: A button may have both an image and a text string

associated with it. Also, the image can be changed as the state of

the button changes.

Manageable

➢ It is easy to manage and configure. Its mechanism and composition

pattern allows changing the settings at run time as well. The

uniform changes can be provided to the user interface without

doing any changes to application code.

Difference between AWT and Swing

COMPONENTS & CONTAINERS

➢ A component is an independent visual control, such as a

push button or slider.

➢ A container holds a group of components. Thus, a container

is a special type of component that is designed to hold other

components.

➢ Swing components inherit from the

javax.Swing.JComponent class, which is the root of the

Swing component hierarchy.

Swing Components and Containers

Swing Components

➢Swing components are derived from the JComponent class.

➢JComponent provides the functionality that is common to

all components.

➢For example, JComponent supports the pluggable look and

feel.

➢JComponent inherits the AWT classes Container and

Component.

➢Thus a Swing component is built on and compatible with an

AWT component.

➢All of Swing’s components are represented by classes defined

within the package javax.swing.

Class names for Swing components(including

those used as containers)

JApplet JSlider

JColorChooser JTable

JDialog JTogglebutton

JFrame JViewport

JLayeredPane JButton

JMenuItem JComboBox

JPopupMenu JEditorPane

JRootPane JInternalFrame

JList JOptionPane

JProgressBar

Swing Conainers

➢Swing defines two types of containers.

➢The first are top-level containers: JFrame, JApplet,

JWindow, and JDialog.

➢They do not inherit JComponent. However, they inherit

the AWT classes Component and Container.

➢Unlike Swing’s other components, which are lightweight, the

top level containers are heavyweight.

➢The one most commonly used for application is JFrame and

the one used for Applet is JApplet.

➢The second type of containers supported by Swing are

lightweight containers.

➢They inherit the JComponent.

➢An example of lightweight container is JPanel.

➢Lightweight container can be contained within another

container.

➢ Following is the list of commonly used containers while designed

GUI using SWING.

The Model-View-Controller Architecture

➢ Swing uses the model-view-controller architecture (MVC)

as the fundamental design behind each of its components

➢ Essentially, MVC breaks GUI components into three

elements. Each of these elements plays a crucial role in how

the component behaves.

➢ The Model-View-Controller is a well known software

architectural pattern ideal to implement user interfaces on

computers by dividing an application intro three

interconnected parts

➢Main goal of Model-View-Controller, also known as MVC, is

to separate internal representations of an application from the

ways information are presented to the user.

➢ Initially, MVC was designed for desktop GUI applications but

it’s quickly become an extremely popular pattern for

designing web applications too.

➢ MVC pattern has the three components :

➢Model that manages data, logic and rules of the application

➢View that is used to present data to user

➢Controller that accepts input from the user and converts it

to commands for the Model orView.

➢ The MVC pattern defines the interactions between these

three components like you can see in the following figure :

➢The Model receives commands and data from the

Controller. It stores these data and updates theView.

➢ The View lets to present data provided by the Model to the

user.

➢ The Controller accepts inputs from the user and converts it

to commands for the Model or theView.

EVENT HANDLING IN SWINGS

➢ The functionality of Event Handling is what is the further step

if an action performed.

➢ Java foundation introduced “Delegation Event Model” i.e

describes how to generate and control the events.

➢ The key elements of the Delegation Event Model are as

source and listeners.

➢ The listener should have registered on source for the purpose

of alert notifications.

➢ All GUI applications are event-driven

Java Swing event object

➢ When something happens in the application, an event object

is created.

➢ For example, when we click on the button or select an item

from a list.

➢ There are several types of events, including ActionEvent,

TextEvent, FocusEvent, and ComponentEvent.

➢ Each of them is created under specific conditions.

➢ An event object holds information about an event that has

occurred.

Example

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

public class Swingdemoevent implements ActionListener {

JTextField t=new JTextField(20);

JButton b=new JButton("OK");

public Swingdemoevent() {

JFrame f=new JFrame();

f.add(t);

f.add(b);

f.setSize(300,300);

f.setLayout(new FlowLayout());

f.setVisible(true);

b.addActionListener(this);

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); }

public void actionPerformed(ActionEvent e)

{

t.setText("Welcome");

}

public static void main(String args[]) {

Swingdemoevent s=new Swingdemoevent(); Output

} }

SWING LAYOUT MANAGERS

➢ Layout refers to the arrangement of components within the

container.

➢Layout is placing the components at a particular position

within the container. The task of laying out the controls is done

automatically by the Layout Manager.

➢The layout manager automatically positions all the components

within the container.

➢Even if you do not use the layout manager, the components are

still positioned by the default layout manager. It is possible to

lay out the controls by hand, however, it becomes very difficult

➢ Java provides various layout managers to position the controls.

Properties like size, shape, and arrangement varies from one

layout manager to the other.

➢ There are following classes that represents the layout managers:

java.awt.BorderLayout

java.awt.FlowLayout

java.awt.GridLayout

java.awt.CardLayout

java.awt.GridBagLayout

javax.swing.BoxLayout

javax.swing.GroupLayout

javax.swing.SpringLayout etc.

 A BorderLayout places components in up to five areas: top,

bottom, left, right, and center. All extra space is placed in the

center area.

 GridLayout simply makes a bunch of components equal in size

and displays them in the requested number of rows and columns.

 FlowLayout is the default layout manager for every JPanel. It

simply lays out components in a single row, starting a new row if

its container is not sufficiently wide.

 The CardLayout class lets you implement an area that contains

different components at different times. A CardLayout is often

controlled by a combo box, with the state of the combo box

determining which panel (group of components)

the CardLayout displays.

 GridBagLayout is a sophisticated, flexible layout manager. It aligns

components by placing them within a grid of cells, allowing

components to span more than one cell. The rows in the grid can

have different heights, and grid columns can have different widths.

 The BoxLayout class puts components in a single row or column. It

respects the components' requested maximum sizes and also lets

you align components.

 GroupLayout works with the horizontal and vertical layouts

separately.The layout is defined for each dimension independently.

 SpringLayout lays out the children of its associated container

according to a set of constraints

JButton

➢JButton extends AbstractButton class

Commonly used Methods of AbstractButton class:

➢void setText(String s): It is used to set specified text on button

➢String getText(): It is used to return the text of the button.

➢void setEnabled(boolean b): It is used to enable or disable the

button.

➢void setIcon(Icon b): It is used to set the specified Icon on the

button.

➢ Icon getIcon(): It is used to get the Icon of the button.

➢void addActionListener(ActionListener a): It is used to add

the action listener to this object.

Example (JButton)

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

public class testswing extends JFrame{

testswing(){

JButton bt1 = new JButton("Yes");

JButton bt2 = new JButton("No");

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setLayout(new FlowLayout());

setSize(400, 400);

add(bt1);

add(bt2);

setVisible(true); }

public static void main(String[] args) {

new testswing(); } }

Jlabel

 Here Icon is abstract class that cannot be instantiated. ImageIcon is a

class that extends Icon. So to load images the following statement can be

used:

ImageIcon ic=new ImageIcon(“filename”);

where filename is a string quantity.

Commonly used Methods of JLabel class:

➢String getText(): It returns the text string that a label

displays.

➢void setText(String text): It defines the single line of text

this component will display.

➢void setHorizontalAlignment(int alignment): It sets

the alignment of the label's contents along the X axis.

➢Icon getIcon(): It returns the graphic image that the label

displays.

➢ int getHorizontalAlignment(): It returns the alignment

of the label's contents along the X axis.

Example (JLabel)

import javax.swing.*;

public class SimpleLabel extends JFrame

{ SimpleLabel()

{ ImageIcon ic=new ImageIcon("download.jpg");

JLabel jl=new JLabel("Name",ic,JLabel.LEFT);

setSize(250,300);

setVisible(true);

add(jl);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

public static void main(String args[])

{

new SimpleLabel();

}

}

JTextField

Commonly used Methods of JTextField class:

➢ void addActionListener(ActionListener l): It is used to add

the specified action listener to receive action events from this

textfield.

➢ void setFont(Font f): It is used to set the current font.

➢ void removeActionListener(ActionListener l): It is used to

remove the specified action listener so that it no longer receives

action events from this textfield.

Example (JTextField)

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

public class MyTextField extends Jframe {

public MyTextField() {

JTextField jtf = new JTextField(20); //creating JTextField.

add(jtf); //adding JTextField to frame.

setLayout(new FlowLayout());

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setSize(400, 400);

setVisible(true); }

public static void main(String[] args)

{

new MyTextField();

} }

Example (JFrame and JLabel)

JAVA DATABASE CONNECTIVITY (JDBC)

➢ Java Database Connectivity : It is a standard Java API for
database-independent connectivity between the Java
programming language and a wide range of databases.

➢ The JDBC library includes APIs for each of the tasks commonly
associated with database usage:

 Making a connection to a database

 Creating SQL or MySQL statements

 Executing that SQL or MySQL queries in the database

 Viewing & Modifying the resulting records

➢ JDBC works with Java on a variety of platforms, such as
Windows, Mac OS, and the various versions of UNIX.

JDBC Architecture

➢ JDBC Architecture consists of two layers

 JDBC API:This provides the application-to-JDBC Manager

connection.

 JDBC Driver API:This supports the JDBC Manager-to-Driver

Connection.

➢The JDBC API uses a driver manager to provide transparent

connectivity to heterogeneous databases.

➢The JDBC driver manager ensures that the correct driver is used

to access each data source.

Common JDBC Components

➢ The JDBC API provides the following interfaces and classes:

 DriverManager:This class manages a list of database drivers.

 Driver: Handles the communications with the database server

 A JDBC driver is a software component enabling a Java application to

interact with a database.

 To connect with individual databases, JDBC requires drivers for each

database.

 Connection: All communication with database is through connection

interface object.

 Statement: This interface object is used to submit the SQL statements to

the database.

 ResultSet: These objects hold data retrieved from a database . It acts as an

iterator to allow you to move through its data.

 SQLException: This class handles any errors that occur in a database

application.

➢The forName() method of java.lang.Class is used to register

the driver class.

➢The getConnection() method of DriverManager class is used to

establish connection with the database

➢The createStatement() method of Connection interface is used

to create statement. The object of statement is responsible to

execute queries with the database.

➢The executeQuery() method of Statement interface is used to

execute queries to the database. This method returns the object of

ResultSet that can be used to get all the records of a table.

➢By closing connection object statement and ResultSet will be

closed automatically. The close() method of Connection interface

is used to close the connection.

Creating and Executing Queries

 Structured Query Language (SQL) is a standardized language that

allows you to perform operations on a database, such as creating

entries, reading content, updating content, and deleting entries.

 SQL is supported by almost any database that is used, and it allows

to write database code independently of the underlying database.

 Create Database

Syntax

CREATE DATABASE databasename;

CREATE DATABASE emp;

 Drop Database

Syntax

DROP DATABASE databasename;

DROP DATABASE emp;

 Create Table

Syntax

CREATE TABLE table_name (column1 datatype(size), column2

datatype(size),…..);

CREATE TABLE Employees (id int NOT NULL, age int

NOT NULL, first VARCHAR(10), last VARCHAR(10),
PRIMARY KEY (id)); /*The NOT NULL constraint enforces a

 Drop Table //column to NOT accept NULL values.*/

Syntax

DROPTABLE table_name;

DROP TABLE Employees;

 INSERT Data

Syntax

INSERT INTO table_name VALUES (value1, value2, value3, ...);

INSERT INTO Employees VALUES (100, 18, 'Zara', 'Ali');

 SELECT Data

Syntax

SELECT column1, column2, ...FROM table_name;

OR

SELECT * FROM table_name; // To select the whole table

SELECT first, last, age FROM Employees WHERE id = 100

 UPDATE Data

Syntax

UPDATE table_name SET column1 = value1, column2 = value2, ...

WHERE condition;

UPDATE Employees SET age=20 WHERE id=100;

 DELETE Data

Syntax

DELETE FROM table_name WHERE condition;

DELETE FROM Employee WHERE id=100;

Java Database Connectivity with 6 Steps
1. Import the packages: import java.sql.*

2. Register the JDBC driver:

To open a communication channel with the database.

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); //MS Access

Class.forName(“com.mysql.jdbc.Driver”); //MySQL

[or Class.forName("org.apache.derby.jdbc.ClientDriver");]//netbeans

3. Open a connection:

Connection connect =

DriverManager.getConnection("jdbc:odbc:mydsn");//MSAccess

Connection connect = DriverManager.getConnection (“jdbc:mysql://

localhost:3306/mydatabase”,”root”,”root”);//MySQL

[or Connection

connect=DriverManager.getConnection("jdbc:derby://localhost:1527/

Test1", "Test", "Test");]//netbeans

4. Execute a query: build and submit an SQL statement. For that ,

First create the statement object

Statement stmt=con.createStatement(); //OR PreparedStatement

Then execute query

ResultSet rs=stmt.executeQuery("select * from tablename");

5. Extract data from result set: Use appropriate

ResultSet.getXXX() to retrieve the data from the result set

while(rs.next()){

System.out.println(rs.getInt(1)+" "+rs.getString(2));

}

6. Clean up the environment: closing all database resources

con.close();

Java Database Connectivity with MySQL

If we are using mysql database, we need to know following

informations for the mysql database:

➢ 1. Driver class: The driver class for the mysql database is

com.mysql.jdbc.Driver.

➢ 2. Connection URL: The connection URL for the mysql database

is jdbc:mysql://localhost:3306/mydatabase where jdbc is the API,

mysql is the database, localhost is the server name on which mysql

is running, we may also use IP address, 3306 is the port number

and mydatabase is the database name. We may use any database, in

such case, we need to replace the mydatabase with our database

name.

➢ 3. Username:The default username for the mysql database is root.

➢ 4. Password: It is the password given by the user at the time of

installing the mysql database. In this example, we are going to use root

as the password.

➢ Let's first create a table in the mysql database, but before creating

table, we need to create database first.

create database mydatabase;

use mydatabase;

create table employee(id int(10),name varchar(40),age int(3));

Difference between Statement and PreparedStatement

 1.Statement :

It is used for accessing your database. Statement interface cannot accept parameters

and useful when you are using static SQL statements at runtime. If you want to

run SQL query only once than this interface is preferred over PreparedStatement.

Eg) //Creating The Statement Object and then execute

Statement st = con.createStatement();

st.executeUpdate("CREATE TABLE STUDENT(ID NUMBER, NAME VARCHAR)");

2. PreparedStatement :

It is used when you want to use SQL statements many times. The PreparedStatement

interface accepts input parameters at runtime.

Eg) //Creating the PreparedStatement object

PreparedStatement pst = con.prepareStatement("update STUDENT set

NAME = ? where ID = ?"); //Setting values to place holders

pst.setString(1, "RAM"); //Assigns "RAM" to first place holder

pst.setInt(2, 512); //Assigns "512" to second place holder

pst.executeUpdate(); //Executing PreparedStatement

Commonly used methods of Statement interface:

The important methods of Statement interface are as follows:

➢ 1) public ResultSet executeQuery(String sql): is used to

execute SELECT query. It returns the object of ResultSet.

➢ 2) public int executeUpdate(String sql): is used to execute

specified query, it may be create, drop, insert, update, delete etc.

➢ 3) public boolean execute(String sql): is used to execute

queries that may return multiple results.

➢ 4) public int[] executeBatch(): is used to execute batch of

commands.

Methods of PreparedStatement interface

The important methods of PreparedStatement interface are given

below:

Commonly used methods of ResultSet interface

1) public boolean next():is used to move the cursor to the one row next from

the current position.

2) public boolean previous():is used to move the cursor to the one row

previous from the current

3) public boolean first():is used to move the cursor to the first row in result

set object.

4) public boolean last():is used to move the cursor to the last row in result set

object.

5) public int getInt(int columnIndex):is used to return the data of specified

column index of the current row as int.

6) public int getInt(String columnName):is used to return the data of

specified column name of the current row as int.

7) public String getString(int columnIndex):is used to return the data of

specified column index of the current row as String.

8) public String getString(String columnName):is used to return the data

of specified column name of the current row as String.

import java.sql.*;
public class FirstExample
{ public static void main(String[] args)

{ Connection connect = null;
try
{ Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

connect = DriverManager.getConnection(“jdbc:odbc:mydsn”);
PreparedStatement pstm=connect.prepareStatement("SELECT id, first, last, age

FROM Employees");
ResultSet rs =pstm.executeQuery();
while(rs.next())
{ int id = rs.getInt("id"); int age = rs.getInt("age");

String first = rs.getString("first"); String last = rs.getString("last");
System.out.print("ID: " +id+", Age: "+age+", First: "+first+", Last: "+ last);

}
rs.close(); pstm.close(); connect.close();

}
catch(SQLException se)

{ System.out.println(“SQL EXCEPTION OCCURRED”);}

}
}

void viewall()

{

try

{

PreparedStatement pstm=connect.prepareStatement("select * from

Mytab");

ResultSet rs=pstm.executeQuery ();

while (rs.next())

{ // Roll & Name are fields in database

System.out.println(rs.getInt("Roll")+ " "+rs.getString("Name"));

}

}

catch(Exception e){}

}

Sample Code – select *

void search()

{

try

{

int r=12;

PreparedStatement pstm=connect.prepareStatement("select * from Mytab

where Roll=?");

pstm.setInt(1,r);

ResultSet rs=pstm.executeQuery ();

while (rs.next())

{

int roll = rs.getInt("Roll");

String sname = rs.getString("Name");

System.out.println(roll+ " "+sname);

}

}

catch(Exception e){}

}

Sample Code - Search by ID

void addstudent(int rollno, String name)

{

try

{

PreparedStatement pstm=connect.prepareStatement("insert into Mytab

(Roll,Name)values(?,?)");

pstm.setInt(1,rollno);

pstm.setString(2,name);

pstm.executeUpdate();

}

catch(Exception e){}

}

Sample Code - insert

void edit(int roll, int roll_edit, String name_edit)

{

try

{

PreparedStatement pstm =connect.prepareStatement("update Mytab set

Roll=?,Name=? where Roll=?");

pstm.setInt(1,roll_edit);

pstm.setString(2,name_edit);

pstm.setInt(3,roll);

pstm.executeUpdate();

}

catch(Exception e){}

}

Sample Code - update

void delete(int roll)

{

try

{

PreparedStatement pstm=connect.prepareStatement("delete from Mytab where

Roll=?");

pstm.setString(1,roll);

pstm.executeUpdate();

}

catch(Exception e){}

}

Sample Code - delete

